
55

Software Terminology as
a Curse or Blessing:
Possible Solutions for
Terminological Problems

Matthias Vogel
Universität Halle-Wittenberg
Germany

1. Introduction
In his essay „Glanz und Elend der Übersetzung“ (1937), the Spanish philosopher
Ortega y Gasset comments on general features of special languages and
terminologies:

Eine Sprache ist ein System von Wortzeichen, mit dessen Hilfe die einzelnen
Menschen sich ohne vorherige Vereinbarung verständigen können, während
eine Terminologie nur verständlich ist, wenn derjenige, der sie schreibt oder
spricht, und derjenige, der sie liest oder hört, sich zuvor und individuell über
die Bedeutung der einzelnen Zeichen geeinigt haben. Deshalb nenne ich sie
eine Pseudosprache [...] Sie ist ein Volapük, ein Esperanto, die durch eine
besondere Übereinkunft unter denen, die ein bestimmtes Fach pflegen,
festgelegt wurde.1 (Ortega y Gasset 1996: 128f.)

Is this really true, we might ask ourselves? Is terminology research nothing but a
kind of pseudo science? Is terminology work really as important for the quality of
technical documentation and translation as it is often described? Is Ortega right in
saying that languages for specific purposes are only just pseudo languages?

1 In English, this quotation reads as follows: A language is a system of signs that people use to
understand each other without previous agreement. In contrast, a specific terminology can only be
understood if those who use it have commonly agreed on the meaning of the various signs.
Consequently, I am calling terminology a pseudo-language […], a kind of Volapük or Esperanto,
which are artificial languages created by experts of a specific field.

fq.ikk
Tekstboks
Published in LSP & Professional Communication Volume 4, Number 2, October 2004 - ISSN 1601-1929 © DSFF / LSP Centre

56

This paper aims at giving an insight into the practical terminology work of the
German software company Intershop and underlining the importance of
terminology issues. The first chapter of this paper is dedicated to the main
differences between software terminologies and “classical” kinds of specialized
terminology (cf. chapter two). In chapter two, terminology work is described as a
prerequisite for creating technical documents and translations (cf. chapter three and
four). Following this, I will introduce a localization tool that Intershop developed to
localize templates for Enfinity MultiSite, which is the core Intershop product.
Finally, I will make a suggestion for a possible structure of a terminology database
(cf. chapter five).

2. Software Terminology and Classical Terminologies
It is commonplace knowledge that languages for specific purposes are becoming
increasingly important. In today’s global village, information is circulating ever
faster. This applies to general as well as to specific pieces of information. The
increasing number of subject-specific fields makes information transfer very
difficult. To avoid communication difficulties between experts and non-experts, but
also between experts, new terms must immediately be collected, defined, and made
accessible. Terms mark off the numerous scientific subjects.

Software terminology, however, plays a special role. It has something in common
with other special languages, but it also shows a number of differences.

As regards common features of software terminology and other special languages,
these features aim at establishing a clear, precise and successful understanding.
Theoretically, this goal can only be reached if one concept has only one
designation, and one designation has only one meaning. The linguist Florian
Coulmas (1992: 347) describes special languages using an optical metaphor.
According to Coulmas, special languages are:

Erweiterungen in einem ähnlichen Sinn wie ein Mikroskop eine Erweiterung
des Auges ist, Hilfsmittel also, mittels derer nicht nur Gegenstandsbereiche
in größerem Detail durchdrungen werden, sondern auch neue
Gegenstandsbereiche perzeptuell und begrifflich erschlossen werden.2

Let me now explain the differences between software terminology and other kinds
of special languages. Software terminology, literally understood, is no special
language like the languages of medicine, law, or biochemistry. However, the
interface of a software program often contains elements of special languages. If you
have developed a software program for insurance companies or the automobile
industries, the program interface would certainly contain terms from these

2 In English, this quotation reads as follows: Special languages are a kind of extensions similarly to
a microscope being a widening of the human eye. Special languages not only help to look at things
in great detail, but they also help to get an idea of how something is like.

Article by Matthias Vogel

57

industries (cf. Kemmann 2002). The main differences between software and
“classical” terminologies are the following:

• Kind of interaction
Whereas classical terminologies contribute to a better understanding
between peoples, software terminology facilitates communication between
human beings and machines.

• Target groups

Special languages are addressed to specific target groups that are relatively
small and homogeneous. Software terminology is different. Today
everybody knows some sort of computer software. Consequently, the target
group is fairly heterogeneous.

• Assumed knowledge

Using a special language requires a considerable amount of subject
knowledge. Computer and software knowledge, however, has become part
of the general knowledge and does not require specific training.

In addition to these differences, the term “software terminology” is fairly
ambiguous. On the one hand, there is the actual software terminology, e. g. menus
and buttons of a software program. On the other hand, there is the computer
terminology, which basically is the language of information technology. On the
edge of the field of computer terminology you can find the jargon of software
developers. This jargon is a mixture of English and German called “Germish”. It is
mainly used in new companies, the so-called start-ups. You can frequently meet
this kind of “Germish” in oral communication, but also in e-mails, newsgroups,
chat rooms and various other communication forms. “Germish” should always be
avoided in any kind of documentation or technical translation. It does, however,
often affect technical documents and make a writer´s life more difficult. Such bad
words are, for example, verbs like accepten, anpingen, committen, cutten, delivern,
detecten, but also complex verbs like konferenzcallen, setuppen or webcammen.
This jargon is no language for specific purposes. Instead, it is a language mixture in
which simple and complex verbs are adapted to the German grammar. This mixture
is a kind of “pidginised” German with a reduced grammar, lexicon and style.
Because software users often treat “Germish” and software terminology alike,
“Germish” reduces the social prestige of the software terminology as a whole.

In their everyday work, technical writers need to have access to monolingual terms
and their definitions. To make a software product linguistically and culturally
appropriate to a foreign language, translators and localization specialists translate
the necessary pieces of information into the target language.

Dictionaries cannot keep up with the fast development in the various fields. This is
why the terminology must be worked on from the very beginning of a project so
that terminology lists are ready before any documentation or localization work is

58

done. The process of creating, defining, collecting and storing terminology is
referred to as terminology work (cf. Arntz/Picht/Mayer 2002). The amount of work
dedicated to terminology depends on the kind of access to existing terminology
lists.

A technical writer needs linguistic as well as subject-specific knowledge in order to
create an unambiguous documentation or translation. In addition to that, a translator
needs a specific knowledge which is called transfer competence. A translator must
know the subject and its terminology in at least two languages. To acquire this
knowledge, a translator would have to build up the terminological knowledge
himself. Such work requires thorough investigations. If you work on a project, you
just do not have the time to dedicate to terminology. The only real solution of this
problem is to work on terminology issues systematically, that is to work on
terminology from scratch. You must start with terminology work early enough –
soon after the scheduling and budgeting phase – and keep an eye on the use of
terminology until the product is released.

The following aspects are at the core of systematic terminology work:

• Terminology work is oriented towards the concepts of terms.
Monolingual terminology work consists of defining concepts and finding
suitable names for these concepts. Bilingual terminology work requires
defining concepts in the target language. Concepts solely exist in the minds
of writers and readers. Only by means of concepts we can think about real or
imagined concepts. Working as a writer or translator, you must always
remember the so-called Golden Rule: “Use one designation for one
concept.” This designation should then be used in all documents of a
document set.

• Terminology work is based on definitions.

Terminology experts define the conceptual meaning of a term by providing a
definition for this term. This task is often underestimated. Companies do not
want to dedicate time and resources to the terminology setup. This is no
peccadillo, especially if you know that about 75% of a translation process is
used up by terminology research. Terminology work is increasingly
becoming an economic factor. Terminological mistakes can lead to
competitive disadvantages, miscalculations, and other financial losses (cf.
Austermühl 2001: 89).

Consequently, definitions should be short, precise, and they should describe the
main features of the definiendum. Definitions must be correct (conceptual meaning)
and linguistically unambiguous (semantic meaning). In your practical work, you
might find various kinds of definitions to meet your needs. Sometimes, various
definitions are used within the same set of documents. Readers may then interpret
these definitions quite differently although they are actually very similar. The

Article by Matthias Vogel

59

following examples show some definitions of the term “cartridge”.3 As far as the
content is concerned, these definitions are very similar. The different wording,
however, is a permanent source of irritation:

• The term “cartridge” refers to an installable software module that
contributes a certain piece of functionality to an Enfinity MultiSite server.
Cartridges provide a standard mechanism for packaging and deploying
program code in order to make the functionality implemented by the code
available on an Enfinity MultiSite server.

• Think of a cartridge as a software module that encapsulates specific business
functionality. It contains all necessary components to execute that
functionality within Enfinity MultiSite. After a cartridge is installed and
registered with Enfinity MultiSite, it extends Enfinity MultiSite with its
functionality seemlessly. This means that, as an Enfinity MultiSite user, you
won't notice whether you are executing native Enfinity MultiSite
functionality or an installed cartridge's functionality. That is because
Enfinity MultiSite itself is built of several cartridges, storing its main
functionality in the core cartridge.

• Cartridges are portable and flexible, because you can install and load them
on the systems that need this functionality and you can develop additional
functionality as needed, just reloading the updated cartridge after
completion.

• A term used within Intershop to refer to a software module. Cartridges
contain business and presentation logic and provide a well-defined set of
functionality for an Intershop e-commerce application.

• An installable software module that provides additional functionality to an
Enfinity system. The term "cartridge" refers to the mechanism that allows
developers to package and deploy functional extensions of Enfinity, as well
as to the functionality that is delivered with a cartridge.

• A cartridge is a software module that is used to deploy functionality to an
Enfinity MultiSite system. It is a collection of objects such as pipelines,
templates, images, static content, and java code. The standard functionality
of Enifinity MultiSite is contained in cartridges. This functionality can be
extended by deploying new cartridges which contain additional
functionality.

• A cartridge (in the context of Intershop's software) is a piece of software that
consists of java classes and methods, pipelets and pipelines, templates and
accompanying data (e.g. images, online help files) It provides certain
functionality which is either neccessary for the product (i.e. the cartridge is
part of the product) or it is added to a product/ installation to extend existing
functionality.

• An installable software module that implements business logic into the
Enfinity platform.

3 These definitions are taken from different documents of the Intershop Enfinity MultiSite
documentation package.

60

Independent of how to define a new term, the results of research and development
must be given a name and an explanation. We always need new terms to refer to
new concepts. Only after we have provided concepts with a name, we can talk and
write about concepts (documentation) or translate them (technical translation and
localization).

3. Terminology Work as a Prerequisite for Technical Documentation
The documentation team in a software company has a great variety of tasks. One of
the main tasks of a writer is to create user manuals for end users, online help
systems, or developer guides (description of software modules and programming
interfaces). But there are yet some more tasks a writer is responsible for, namely
terminology management and software localization. In his work, a writer should
always follow the established rhetorical and editorial principles, which are
accurateness, brevity and terminological consistency. Every document thus
becomes easier to read and understand. Akronyms like KISS (Keep it short and
simple) help us remember this fact. Writing for the readers of a document is an
essential part of what is called “usability”. Price und Korman (1993) describe the
term “usability” as follows:

A rose is always a rose is always a rose:
• Describe the product accurately (the minimum requirement)
• Apply the same standards to all manuals in a series.
• Don’t use ten different names for the same concept.
• Organize all sections in the same way, e.g., definition first, then example, then

procedure.
• Apply the same formatting standards throughout the document.
• Beware of extreme gyrations of tone.

So far, a number of technical and formal guidelines have been created for technical
documents. In contrast to this, there are just a few linguistic standards specifying
the content and linguistic structure of documents. In English, such linguistic
standards are called “controlled languages”. A controlled language contains a
number of terms including concepts and names. In addition, it provides lists of
words that should be avoided (anti-terms), synonyms, and grammatical rules.

If terminology work is ignored, this leads to confusion and misunderstanding
because one term might then be used in the catalogue, another term in the user
manual, and yet another in marketing papers. If you are lucky, the users will blame
you for being naive and careless. However, you can run into judicial or safety
problems, too. It is also possible that readers distrust your document if they
recognize terminological inconsistencies. A consistent usage of terms improves the
comprehensibility of texts as well as the linguistic consistency of texts from
different authors. Readers should never be able to detect the author of a document.
Besides, terminological consistency ensures the corporate identity by using a
corporate language. Developers in a software company and other specialists neglect

Article by Matthias Vogel

61

the fact that corporate identity is little more than terminological work. Hence, it is
very important to collect and categorize terms, their definitions, and provide them
for the user.

The linguistic elements of a user interface (UI)4 often repeat themselves, especially
in software documentation. This does not mean that terms are consistently used
throughout the user interface. On the contrary, terminology is far away from being
consistent and non-ambiguous. This is because developers define new terms instead
of terminology experts. There are no fixed processes how to check and harmonize
terminology. Some typical terminological inconsistencies are displayed in Table 1:

Word Usage

ABORT Use “end” or quit instead.

Appears Use “The system displays” instead.

Application Use “program” in end-user documentation.

Check When referring to a checkbox, use “select” or “clear”
instead.
Example: Select the checkbox to activate it.

Checkbox One word.

Choose Use “select” instead.

Click Use with button.
Example: Click the Save button.
Use “press” only for keys on the keyboard. Do not use
“click on”.
Use “select” for links.

Drop-down list Use instead of pop-up menu or pull-down menu. See
also “list box”.

Enter Use “enter” when referring to a user entering
information on the screen.
Example: Enter the date in the “Date” field.

Execute Use “run” when referring to a user running a computer
program. Use “execute” when the system executes a
command as a reaction to a users doing.
Example: You can run the Properties Update program
after you modified the property settings.
Example: After you set the xy properties, the system
executes the Properties Update program automatically.

Graphic Use “Figure” when referring to a graphic in a document.

4 All elements of a software application used to interact with the user, such as dialog boxes,
menus, and messages.

62

List box Two words. Used to describe a box that contains
selection options that are NOT in a drop-down list.
Example:

Log in Use “log on” instead. (The GUI overrides this
suggestion.)

Screen Use only when referring to the whole monitor.
Otherwise use “window.”
Example: If the system displays a window asking for a
license key...
Example: If you maximize your application window,
the screen can only show this one window.

Window Refers to what is displayed in a browser’s window.
Example: If the system displays a window asking for a
license key...
See also “screen.”

Table 1: Extract from the Intershop Style Guide

As you can see from the examples, terminology work must aim at excluding
multiple designations for the same concept. This requires defining terms in advance
(before a document is created) and adding them to the corporate style guide.

Without terminological guidelines, it is virtually impossible to use the same terms
in the program menu, the online help, and the user manual. A corporate style guide
should, therefore, solve lexical as well as syntactic and stylistic problems. Besides,
a style guide should provide structural recommendations (templates, page layout),
explain the documentations process, and contain checklists for technical writers and
editors.

Terminology does, however, not only play a role in documentation issues, but also
in the localization process. Localization involves „taking a product and making it
linguistically and culturally appropriate to the target locale (country/region and
language) where it will be used and sold” (Esselink 2000: 3). The next chapter is
about a specific aspect of localization, namely template localization.

Article by Matthias Vogel

63

4. Terminology Work as a Prerequisite for Software Localization
The term internationalization indicates measures that need to be taken before you
can localize the product. It is „the process of generalizing a product so that it can
handle multiple languages and cultural conventions without the need for re-design“
(Esselink: 2). This involves checking the grammar and orthography of texts before
they get translated, as well as processing cultural conventions (e. g., date and
currency). The English translation technical enabling for the German term
Internationalisierung makes it clear that internationalization measures are taken
before translation. Localization comes afterwards. That is why localization is often
used as a synonym of translation (cf. the two English translations for the term
localization: translation and adaptation). Consequently, localization is a mixture a
both translation und technical adaptation.

Before localizing a product, you should find out if you can use suitable tools, such
as automatic translation systems or translation memory tools. Furthermore, the
developers should provide you with the entire set of files to be translated. If
possible, you should also have a running version of the software to be localized.
The translatable files can be text files (resource files under Windows) or executable
files (.dll or .exe files). If you translate text files, you can immediately see your
translation in the user interface. If you use executable files, you can create your
translation independent of the programming code in a separate text editor.
Normally, the translation is based on source code files (text files), or else the texts
to be translated are provided in an Excel sheet.

Missing consistency is one of the main localization problems. If you do not use the
same words for the same concepts, this may lead to critical questions and changes
in the program itself. This costs time and money. Therefore, terminological
mistakes must be avoided from the very beginning. Such mistakes are, for example,
due to the context dependency and polysemy of terms. A typical example for a
context dependent usage of terms is the German term “Bestellung”. In English, this
term is rendered either as purchase order, customer order or manufacturing order.
To avoid terminological mistakes and ensure a consistent usage of terminology, the
following guidelines must be applied:

1. Terminology work must be done in time.
 The translator needs to get the right input from the writer. The latter must

write for translation or, in other words, write for a global audience. The whole
product-specific terminology should be provided in lists and glossaries before
localizing the product. This is the only way to cheaply translate many texts
into another language in a short period of time. If you talk about writing for a
global audience you talk about what to avoid: colloquial expressions, cultural
contents in examples and graphics, polysemous expressions, irony and plays
on words. A writer should remember that a text gets about 30% longer when it
is translated from the English into the German language. And finally, a writer
should always try to use terms consistently throughout the different document
versions (for a detailed description of these rules, cf. Zerfaß 2002: 209f.).

64

2. Terminology work must be feasible.
 When localizing software, a translator must be able to recognize which

elements are localizable texts, and which are part of the program code and
hence non-translatable. To distinguish translatable from non-translatable parts,
it is necessary to insert a kind of localization tag in the code to indicate the
translatable parts. Intershop developed a localization tool (“tLoc”) for the
purpose of template translation.

 The Intershop product “Enfinity” is based on English templates. To use
languages other than English on the Enfinity Websites, the templates must be
localized. This process is done by the “tLoc” tool. This tool helps to extract
the user actions and list them in a separate Excel sheet where they can be
translated. After that, the translations are inserted in the templates again.

4.1 The Localization Tool „Enfinity tLoc“
To find out the translatable parts (strings) of an Enfinity template, proceed as
follows:

Preparing the Templates
All translatable parts of a template are enclosed by “isloc” tags. A specific
configuration file is used to create so called master templates.

Creating Dictionary Files
To create dictionary files, the translator can choose between two common file
formats, namely XML or comma-separated files (.csv files). The format depends on
how and where the strings are to be translated. Comma-separated files are
processed in spread-sheet programs like StarOffice, Calc or Microsoft Excel
whereas XML files are translated using computer-aided translation tools (CAT
programs like Star Transit or TRADOS WorkBench).

Translating Marked Strings
This is the actual translation process. The following example requires that the
translatable files are provided in XML and comma-separated files. Both the XML
and CSV formats are based on a template that has been created for exercising
purposes only.

<html>
 <head>
 <title>Localization Test Template</title>
 </head>
 <body>
 <h1>This is a Localization Test Template</h1>
 <p>The text outside of html tags is considered as localizable text.</p>
 The value attribute of inputs is considered as localizable if the input is of type
'button','submit' or 'reset'.
 <form>
 <input type="text" value="" />
 <p>

Article by Matthias Vogel

65

 <input type="reset" value="Reset" /> <input type="submit" value="OK" />
 </p>
 </form>
 <script>
 var text = "Text inside script tags is currently left unchanged!";
 </script>
 </body>
</html>

After adding the localization tags, you would get the following XML file:

<dictionary>
<isloc>
 <field>3ea9317e000517a300000a00180304fc</field>
 <field>html</field>
 <field />
 <field>Reset</field>
 <field>Reset</field>
 </isloc>
<isloc>
 <field>3ea9317e000338a200000a00180304ff</field>
 <field>html</field>
 <field />
 <field>The text outside of html tags is considered as localizable text.</field>
 <field>The text outside of html tags is considered as localizable text.</field>
 </isloc>
<isloc>
 <field>3ea9317e0004284b00000a00180304cc</field>
 <field>html</field>
 <field />
 <field>The value attribute of inputs is considered as localizable if the input is of type
'button','submit' or 'reset'.</field>
 <field>The value attribute of inputs is considered as localizable if the input is of type
'button','submit' or 'reset'.</field>
 </isloc>
<isloc>
 <field>3ea9317e000174fa00000a0018030528</field>
 <field>html</field>
 <field />
 <field>Localization Test Template</field>
 <field>Localization Test Template</field>
 </isloc>
<isloc>
 <field>3ea9317e0002348300000a00180304f6</field>
 <field>html</field>
 <field />
 <field>This is a Localization Test Template</field>
 <field>This is a Localization Test Template</field>
 </isloc>
<isloc>

66

 <field>3ea9317e0006b6e900000a0018030531</field>
 <field>html</field>
 <field />
 <field>OK</field>
 <field>OK</field>
 </isloc>
 </dictionary>

If the translator works with an automatic translation program, the file can be
processed in a suitable CAT editor (cf. Figure 1):

Figure 1: XML based dictionary file in a CAT editor

If the translation is based on a comma-separated dictionary file, the translator can
choose any calculation program for processing the file (cf. Figure 2):

Figure 2: Comma-separated dictionary file in a spread-sheet program

Article by Matthias Vogel

67

Creating Localized Templates
The master templates created at the beginning of the localization process are now
integrated with the dictionary files. This means that the strings enclosed by isloc
tags are replaced with the translated strings. If you use the new template, the user
can see the translated version on the Enfinity Websites.

To completely localize templates, however, you will have to make some additional
changes. This includes localizing hard-coded time and date formats as well as
address fields (cf. Ottmann 2002, for a detailed description of date and time
formatting problems).

In general, variables should never be displayed as non-translatable elements (hard-
coded text). This is to avoid that German users can enter the date using only the
American format. Table 2 shows the various possible formats when localizing a
product into English:

Style Deutschland USA

DEFAULT 26.9.2003 26-Sept-03

SHORT 26.9.03 26/9/03

MEDIUM 26.Sept.2003 26-Sept-03

LONG 26. September 2003 September 26, 2003

FULL Freitag, den 26.
September 2003

Friday, September 26,
2003

Table 2: German and American date formats

5. Plastic Words in the Software Industry
Languages for specific purposes are a big reservoir for words that seem to be non-
ambiguous. However, this contradicts the reality. Software terms are ambiguous
and inconsistent. Most of us seem to understand these terms because their meaning
resembles the meanings of words in our everyday language. This is why the
German linguist Uwe Pörksen called these words “plastic words” (cf. Pörksen
1997).

Many plastic words are software terms, which is illustrated by the following article
from the German weekly newspaper „DIE ZEIT“. This article is an extract of an
interview that some journalists conducted with the headquarters of software
companies:

I2, guten Tag.
Hallo, ich habe eine Ihrer Anzeigen gesehen, und ich verstehe sie nicht
ganz. Da steht ganz groß auf einer fast leeren Seite: „Value2“. Was
bedeutet das?

68

Das ist unsere Werbeanzeige für Unternehmen, nicht für Privatpersonen.
Aber sie steht in der „FAZ“, und ich lese sie auch.
Das bedeutet, unsere Software bringt den Unternehmen Wert [...] Jetzt
haben Sie mich erwischt. Also, dass die ihre Prozesse optimaler [...]
Deswegen dieses Value hoch zwei.
Was macht Ihre Software genau?
Sie deckt alle Kernprozesse eines Unternehmens ab. Von der Planung bis
zum Verkauf von Produkten. Diese Infrastruktur läuft übers Internet.
Sie verkaufen also ein Programm.
Nein, verschiedene Lösungen.
Und worum handelt es sich bei „Marketplace-to-Marketplace-
Kollaboration“?
Das kann ich Ihnen jetzt nicht erklären. Am besten gehen Sie auf unsere
Homepage, www.i2.com.
Oje, ob ich dadurch schlauer werde?
Da steht alles, auf Englisch.
In der Anzeige beinahe auch: „Nur eine umfassende B2B-Lösung, die
Marketplace-to-Marketplace-Kollaboration ermöglicht, die gesamte
Supply-Chain koordiniert und optimiert und reichhaltige Content-
Management-Instrumente bietet, macht solche Ergebnisse möglich.“
Was um Gottes willen bedeutet das?
Ich kann Sie nur auf nächste Woche vertrösten, bis unsere Mitarbeiter aus
den Staaten wieder da sind.
Mit wem soll ich sprechen?
Da müssen wir mal schauen, wer im Büro ist. Am besten wenden Sie sich an
unsere BDR-Dame, unsere Business Development Representative. Sie ist
zuständig für solche Fragen am Telefon.
Ist Ihre Firma keine deutsche?
Nein, eine amerikanische, sie wurde 1998 gegründet. Wir sind die deutsche
Niederlassung.
Und Sie wissen nicht, was „Content-Management-Instrumente“ sind?
So tief stecke ich in der Materie nicht drin.

What can this interview tell us about the characteristics of plastic words?

As you can see from the example, the company representatives cannot always
explain what they are doing. They either do not know what they are talking about,
or they use definitions that do not convey the meaning of a term. The various
misunderstandings between the “experts” and the interviewer are caused by the fact
that the terms to be defined (definiens) are explained with the help of other terms
that need some explanation themselves. Let us take another example, which is not
mentioned in the interview:

Article by Matthias Vogel

69

The term “knowledge management” is generally described as a “discipline that
seeks to improve the performance of individuals and organizations by maintaining
and leveraging the present and future value of knowledge assets” (cf. Knowledge
Management Theory Papers 1999). If you analyze this definition, it becomes clear
that the vagueness in meaning is caused by the terms value or knowledge assets.
The terms knowledge asset or artifact have a multifaceted meaning themselves.
They comprise miscellaneous things, such as documents, files, graphics, thoughts,
conversations, software, databases, e-mails et cetera. In other words, terms like
asset or artifact are broad enough to cause confusion in the reader’s mind.

As plastic words are frequently used in marketing and other public papers, the
sources for ambiguity should always be part of a terminological entry in a database.

6. Terminological Entries in a Database
There are several possibilities to avoid terminological problems in a large
company. A very common solution is to create a central terminological database or
termbase5. Bob Clark from the Logos Group used a musical analogy to underline
the importance of a database. He said that a database would allow writers and
translators „to sing from the same hymnbook“.

The structure of a terminological entry generally depends on the purpose of a
termbase and the size of the company. Practical considerations should, however,
always be the starting point for creating a database. Terminology work is not just
an academic exercise.

The crucial point of a termbase is a variable entry structure. It must be possible to
freely select and change data categories and languages (cf. Schmitz 2002). Also, it
must be possible to import data to and export data from the termbase.

To create a termbase for a new product, you must first decide which terms are
generic (and hence stay outside the termbase), and which terms are product-specific
(and hence must be included in the termbase). At this point, it is very important to
agree on a compromise between developers and terminology experts. A round table
is the best way to solve terminology issues and create simple term lists that can
later be imported to the termbase. Figure 3 shows a terminological entry in the
termbase of Intershop. It consists of the categories definition, part of speech, related
terms, example, and provides the English and French translations of a term. Trados
MultiTerm is used as a terminology management system6:

5 A data collection that defines concepts, generally in a specific specialized subject field, and
documents the terms associated with those concepts.
6 A terminology management system (TMS) is a software application that stores and encodes
terminology resources in dictionaries. Examples of terminology management systems are STAR
TermStar and Trados MultiTerm.

70

Figure 3: Terminological entry in the Intershop termbase

Despite of all technologies, it is always the writer who must anticipate problems
and solve them before it is too late. In his practical work, a writer can only
compensate for terminological problems that have been caused during product
development. Because a product can never be developed a second time, a writer
can only make cosmetic changes. This is why a writer should keep an eye on
terminology from the very beginning of product development and accompany this
process until the product is ready to be released.

Only terminology experts should decide how to classify terms and which names to
use. This work can neither be done by software developers nor by a terminology
program. This remains manual work. There are various possibilities to categorize
terminological data, e. g. the entry structure according to ISO 12620 (1999)
distinguishing between a conceptual and a designation level (Schmitz 2002:
189ff.). For the purposes of technical documentation and localization the following
data categories are considered to be sufficient for a project glossary (cf. Esselink
2002: 403):

• Industry-specific terminology, e.g. standard terminology for particular
industries, such as the automotive, pharmaceutical, and financial sectors

• Equivalents for keywords, both verbs and nouns, appropriate for the product
• Product-related names that should not be translated
• Words or even phrases that are repeated throughout the project, such as

”Note”, and ”Select”

Article by Matthias Vogel

71

• Names and explanations of essential product concepts, e.g. basic concepts of
the Intershop Procurement Solution

• Names of help files or manuals
• Hot keys
• Product name and version
• Category, e.g. button, menu, dialog box title, etc.

7. Summary
If taken seriously, terminology work is not a curse, but a blessing. Terminology is
an essential part of software development. Hence, terminology work must start in
time and early enough to be successful. If you enforce a consistent style and
terminology, you can save time and money. This is especially true for software
documentation and localization.

Software developers and terminologists should closely cooperate to work on
terminological problems is an essential part of their work, a new product can more
quickly be released, and the time to market be shortened. Michael Kemmann
(2002: 100) once commented on this topic: „Terminologiearbeit kostet Geld. Keine
Terminologiearbeit kostet noch viel mehr Geld.“7 As a consequence, terminology
work should be considered a big challenge to better connect LSP research with
practical tasks.

We should pay terminology a similar attention as the Romans did with their God of
landmarks, Terminus. When the Romans built the temple on Capitol Hill and
removed the smaller sanctuaries, the augurs did not agree to remove the temple of
Terminus. This temple stayed where it had been before. The symbol of Terminus, a
stone, was included with the temple of Jove, which is the guardian of all landmarks.

Bibliography

Arntz, R./ Picht, H./ Mayer, F. (20024): Einführung in die Terminologiearbeit.

Hildesheim [u.a.]: Olms.
Austermühl, F. (2001): Übersetzen im Informationszeitalter: Überlegung zur

Zukunft fachkommunikativen und interkulturellen Handelns im Global
Village. Trier: Wiss. Verlag.

Bickle, C. (2002): Wege zur Firmenterminologie. In: technische kommunikation.
Zeitschrift für Technische Dokumentation und Informationsmanagement;
3/02, S. 40-43.

Coulmas, F. (1992): Die Wirtschaft mit der Sprache. Eine sprachsoziologische
Studie. Frankfurt a. M.: Suhrkamp.

Esselink, B. (2002): A Practical Guide to Localization. Amsterdam: Benjamins.

7 Terminology work terminology is expensive. No terminology work, however, is even more
expensive.

72

Göpferich, S. (1998): Interkulturelles Technical Writing. Fachliches

adressatengerecht vermitteln. In: Forum für Fachsprachen-Forschung; Bd. 40.
Tübingen: Narr.

Gräfe, E. (Hg.) (2002): tekom-tagungen. Jahrestagung 2002 in Wiesbaden.
Zusammenfassung der Referate. Stuttgart: Gesellschaft für technische
Kommunikation e.V.

Henning, J. / Tjarks-Sobhani, M. (Hg.) (2002): Lokalisierung von Technischer
Dokumentation. In: tekom Schriften zur Technischen Dokumentation; Bd. 4.
Lübeck: Schmidt-Römhild.

~ (Hg.) (2002): Lokalisierung von Technischer Dokumentation. In: tekom Schriften
zur Technischen Dokumentation; Bd. 6. Lübeck: Schmidt-Römhild.

Kemman, M. (2002): Terminologiearbeit in Software-Entwicklung und –
Lokalisierung. In: Henning, J./ Tjarks-Sobhani, M. (Hg.) (2002),
Lokalisierung von Technischer Dokumentation. Schmidt-Römhild, S. 88-100.

Ortega y Gasset, J. (1996 [1939]): Glanz und Elend der Übersetzung. In:
Gesammelte Werke. Lizenzausgabe für Bechtermünz Verlag im Weltbild
Verlag GmbH. Augsburg 1996 (1957 by Revista de Occidente, Madrid). Bd.
IV, S. 126-151.

Ottmann, A. (2002): Software-Lokalisierung. In: Henning, J./ Tjarks-Sobhani (Hg.)
(2002), S. 146-163.

Pörksen, U. (19975): Plastikwörter. Die Sprache einer internationalen Diktatur.
Stuttgart: Klett-Cotta.

Price, J./ Korman, H. (1993): How to Communicate Technical Information. A
Handbook of Software and Hardware Documentation. Boston [u.a.]: Addison-
Wesley.

Schmitz, K.-D. (2001): Terminologieverwaltung. In: Henning, J./ Tjarks-Sobhani,
M. (Hg.) (2001), Informations- und Wissensmanagement für technische
Dokumentation; Bd. 4. Lübeck: Schmidt-Römhild, S. 188-202.

Zimmer, D. (1997): Deutsch und anders. Die Sprache im Modernisierungsfieber.
Reinbek bei Hamburg: Rowohlt.

Article by Matthias Vogel (abstract)

 73

ABSTRACT

Software Terminology as a Curse or Blessing:
Possible Solutions

for Terminological Problems

Matthias Vogel
Universität Halle-Wittenberg

Germany

In our everyday life, the various types of user documentation (printed and online
manuals) are becoming increasingly important, e.g., to program a video recorder or
carry out specific tasks in a computer program. Because very few people read a
manual from front to back, it is not as important for the document to be entertaining
or to use complicated vocabulary.

Terminology management is a frequently underestimated task in documentation
and localization projects. Nevertheless, it plays a crucial role for creating user-
friendly documents that are easy to read and understand. Terminological
inconsistencies, however, make documents unnecessarily complicated and prevent
users from understanding them.

Based on examples from the software company Intershop, this paper contributes to
establishing terminology management at the heart of both technical documentation
and software localization. First, the paper discusses the impact of terminology
issues on how to write and translate technical documents. Second, the paper
describes terminology research as a precondition for localization projects. This is
illustrated by the process of template localization using the “Enfinity tloc” tool.
Third, a suggestion is made about the possible structure of terminological records
in terminological databases, including the concept and other information, such as
definitions, target language equivalents, grammatical information, and contextual
information.

fq.ikk
Tekstboks
Published in LSP & Professional Communication Volume 4, Number 2, October 2004 - ISSN 1601-1929 © DSFF / LSP Centre

