Multi-agent kunstig intelligens og offentlig politikk

  • Roger Normann Ph.d. og seniorforsker ved NORCE Center for Modeling Social Systems
  • Ivan Puga-Gonzalez Ph.d. og postdoktor tilknyttet NORCE Center for Modeling Social Systems
  • F. LeRon Shults Ph.d., professor og seniorforsker ved NORCE Center for Modeling Social Systems
  • Gro Anita Homme MA og senterkoordinator ved NORCE Center for Modeling Social Systems

Resumé

Teoretisk og metodisk utvikling innenfor modellering og kompleksitetsteori har i kombinasjon med teknologiske fremskritt og tilgjengelighet på infrastruktur det siste tiåret, gjort det til en realitet, at man nå kan lage digitale kopier av komplekse sosiale systemer, såkalte multi-agent-simulasjonsmodeller. I slike virtuelle verdener kan man både eksperimentere med og teste politiske løsninger og ulike virkemidler på felt som for eksempel integrering, arbeidsledighet, helse, terrorisme, økonomisk vekst, etc. Verktøyet har dermed potensiale til å gi politikere, planleggere og andre nye kapabiliteter i forhold til en mer effektiv utnyttelse av offentlige ressurser samt utvikle mer presise virkemidler og instrumenter for å nå politiske mål. Vi redegjør for «state of the art» på feltet og diskuterer muligheter, begrensninger og ulike etiske problemstillinger knyttet til simulering av sosiale prosesser.

Referencer

Ahrweiler, P. (2017). Agent-based simulation for science, technology, and innovation policy. Scientometrics, 110(1), 391-415. https://doi.org/10.1007/s11192-016-2105-0

Ahrweiler, P. (Red.). (2010). Innovation in complex social systems. London. Routledge.

Ahrweiler, P., Gilbert, N. & Pyka, A. (2016). Policy modelling of large-scale social systems: Lessons from the SKIN model of innovation. I P. Ahrweiler, N. Gilbert & A. Pyka (Red.), Joining complexity science and social simulation for innovation policy. Agent-based modelling using the SKIN platform (s. 156-180). Newcastle upon Tyne, UK. Cambridge Scholars Publishing. https://doi.org/10.1007/978-3-540-92267-4_5

Ahrweiler, P., Schilperoord, M., Pyka, A. & Gilbert, N. (2015). Modelling Research Policy: Ex-Ante Evaluation of Complex Policy Instruments. Jasss-The Journal Of Artificial Societies And Social Simulation, 18(4). https://doi.org/https://doi.org/10.18564/jasss.2927

Anderson, S. L. (2011). Machine Metaethics. I M. Anderson & S. L. Anderson (Red.), Machine Ethics (s. 21-27). Cambridge. Cambridge University Press. https://doi.org/10.1017/cbo9780511978036.004

Badham, J., Chattoe-Brown, E., Gilbert, N., Chalabi, Z., Kee, F. & Hunter, R. F. (2018). Developing agent-based models of complex health behaviour. Health & Place, 54, 170-177. https://doi.org/10.1016/j.healthplace.2018.08.022

Beckage, B., Gross, L. J., Lacasse, K., Carr, E., Metcalf, S. S., Winter, J. M., … Hoffman, F. M. (2018). Linking models of human behaviour and climate alters projected climate change. Nature Climate Change, 8(1), 79-84. https://doi.org/10.1038/s41558-017-0031-7

Bury, T. M., Bauch, C. T. & Anand, M. (2019). Charting pathways to climate change mitigation in a coupled socio-climate model. PLOS Computational Biology, 15(6). https://doi.org/10.1371/journal.pcbi.1007000

Calder, M., Craig, C., Culley, D., de Cani, R., Donnelly Christl, A., Douglas, R., … Wilson, A. (2018). Computational modelling for decision-making: where, why, what, who and how. Royal Society Open Science, 5(6), 172096. https://doi.org/10.1098/rsos.172096

Conte, R., Andrighetto, G. & Campennl, M. (Red.). (2014). Minding Norms: Mechanisms and dynamics of social order in agent societies. Oxford. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199812677.001.0001

Desai, A. (Red.). (2012). Simulation for Public Policy. New York: Springer.

Ding, Z., Gong, W., Li, S. & Wu, Z. (2018). System Dynamics versus Agent-Based Modeling: A Review of Complexity Simulation in Construction Waste Management. Sustainability, 10(7), 1-13. https://doi.org/https://doi.org/10.3390/su10072484

Elsenbroich, C. & Gilbert, N. (2014). Modelling Norms. Dordrecht. Springer Netherlands.

Epstein, J. M. (2006). Generative Social Science: Studies in Agent-Based Computational Modeling. Princeton. Princeton University Press.

Flache, A. (2018). Between Monoculture and Cultural Polarization: Agent-based Models of the Interplay of Social Influence and Cultural Diversity. Journal of Archaeological Method and Theory, 25, 996-1023. https://doi.org/10.1007/s10816-018-9391-1

Flache, A., Mäs, M., Feliciani, T., Chattoe-Brown, E., Deffuant, G., Huet, S. & Lorenz, J. (2017). Models of Social Influence: Towards the Next Frontiers. Journal of Artificial Societies and Social Simulation, 20(4), 2. https://doi.org/10.18564/jasss.3521

Gilbert, N., Ahrweiler, P., Barbrook-Johnson, P., Narasimhan, K. P. & Wilkinson, H. (2018). Computational Modelling of Public Policy: Reflections on Practice. Journal of Artificial Societies and Social Simulation, 21(1). https://doi.org/10.18564/jasss.3669

Gilbert, N., Pyka, A. & Ahrweiler, P. (2001). Innovation networks-a simulation approach. Journal of Artificial Societies and Social Simulation, 4(3), 1-13.

Gilbert, N., Pyka, A. & Ahrweiler, P. (Red.). (2014). Simulating knowledge dynamics in innovation networks. Heidelberg. Springer. https://doi.org/10.1007/978-3-662-43508-3

Gore, R., Lemos, C., Shults, F. L. & Wildman, W. J. (2018). Forecasting Changes in Religiosity and Existential Security with an Agent-Based Model. Journal of Artificial Societies and Social Simulation, 21(1), 4. https://doi.org/10.18564/jasss.3596

Gore, R., Wozny, P., Dignum, F. P., Shults, F. L., van Burken, C. B. & Royakkers, L. (2019). A value sensitive ABM of the refugee crisis in the Netherlands. Proceedings of the Annual Simulation Symposium: Society for Computer Simulation International. https://doi.org/10.23919/springsim.2019.8732867

Government Office for Science. (2018). Computational Modelling: Technological Futures. London: Government Office for Science.

Hauke, J., Lorscheid, I. & Meyer, M. (2017). Recent Development of Social Simulation as Reflected in JASSS Between 2008 and 2014: A Citation and Co-Citation Analysis. Journal of Artificial Societies and Social Simulation, 20(1), 5. https://doi.org/10.18564/jasss.3238

Jager, W. & Edmonds, B. (2015). Policy Making and Modelling in a Complex World. I M. Janssen, M. A. Wimmer & A. Deljoo (Red.), Policy Practice and Digital Science: Integrating Complex Systems, Social Simulation and Public Administration in Policy Research (s. 57-73). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-12784-2

Lemos, C. M., Gore, R. J., Lessard-Phillips, L. & Shults, F. L. (2019). A network agent-based model of ethnocentrism and intergroup cooperation. Quality & Quantity. https://doi.org/10.1007/s11135-019-00856-y

Madhavan, G., Phelps, C. E., Rouse, W. B. & Rappuoli, R. (2018). Vision for a systems architecture to integrate and transform population health. Proceedings of the National Academy of Sciences, 115(50), 12595-12602. https://doi.org/10.1073/pnas.1809919115

Narasimhan, K. P., Gilbert, N. G., Hope, A. L. B. & Roberts, T. H. (2018). Demystifying Energy Demand using a Practice-centric Agent-based Model.

Ogawa, V. A., Geller, A. & Wallace, R. (2015). Assessing the Use of Agent-Based Models for Tobacco Regulation. Washington, DC. The National Academies Press.

Polhill, J. G., Ge, J., Hare, M. P., Matthews, K. B., Gimona, A., Salt, D. & Yeluripati, J. (2019). Crossing the chasm: a ‘tube-map’ for agent-based social simulation of policy scenarios in spatially-distributed systems. GeoInformatica, 23(2), 169-199. https://doi.org/10.1007/s10707-018-00340-z

Puga-Gonzalez, I., Voas, D., Wildman, W. J., Diallo, S. & Shults, L. F. (In press). Minority integration in a Western city: An agent-based modelling approach. I S. Diallo, W. J. Wildman, S. L. F. & A. Tolk (Red.), Human Simulation: Perspectives, Insights and Applications. New York: Springer. https://doi.org/10.1007/978-3-030-17090-5_10

Richardson, G. P. (2013). System Dynamics. I S. I. Gass & M. C. Fu (Red.), Encyclopedia of Operations Research and Management Science (s. 1519-1522). Boston, MA: Springer.

Scott, N., Livingston, M., Hart, A., Wilson, J., Moore, D. & Dietze, P. (2016). SimDrink: An agent-based netlogo model of young, heavy drinkers for conducting alcohol policy experiments. Jasss-The Journal Of Artificial Societies And Social Simulation, 19(1). https://doi.org/https://doi.org/10.18564/jasss.2943

Shults, F. L. (2018). Can we predict and prevent religious radicalization? I G. Overland, A. J. Andersen, K. E. Førde, K. Grødum & J. Salomonsen (Red.), Violent Extremism in the 21st Century: International Perspectives (s. 45–71). Cambridge: Cambridge Scholars Press.

Shults, F. L., Gore, R., Wildman, W. J., Lynch, C., Lane, J. E. & Toft, M. (2018). A Generative Model of the Mutual Escalation of Anxiety Between Religious Groups. Journal of Artificial Societies and Social Simulation, 21(4), 7. https://doi.org/10.18564/jasss.3840

Shults, F. L., Lane, J. E., Wildman, W. J., Diallo, S., Lynch, C. J. & Gore, R. (2018). Modelling terror management theory: computer simulations of the impact of mortality salience on religiosity. Religion, Brain & Behavior, 8(1), 77-100. https://doi.org/10.1080/2153599X.2016.1238846

Shults, F. L. & Wildman, W. J. (2019). Ethics, Computer Simulation, and the Future of Humanity. I S. Y. Diallo, W. J. Wildman, F. L. Shults & A. Tolk (Red.), Human Simulation: Perspectives, Insights, and Applications (s. 21-40). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-17090-5_2

Shults, F. L., Wildman, W. J., Diallo, S., Puga-Gonzalez, I. & Voas, D. (2018). The Artificial Society Analytics Platform. Proceedings of the 2018 Social Simulation Conference.

Shults, F. L., Wildman, W. J. & Dignum, V. (2018). The ethics of computer modeling and simulation. Winter Simulation Conference (WSC): 4069–4083. IEEE. https://doi.org/10.1109/wsc.2018.8632517

Smaldino, P. E., Calanchini, J. & Pickett, C. L. (2015). Theory development with agent-based models. Organizational Psychology Review, 5(4), 300-317. https://doi.org/10.1177/2041386614546944

Smith, E. R. & Conrey, F. R. (2007). Agent-Based Modeling: A New Approach for Theory Building in Social Psychology. Personality and Social Psychology Review, 11(1), 87-104. https://doi.org/10.1177/1088868306294789

Squazzoni, F. (2012). Agent-Based Computational Sociology (2. utg.). Hoboken, NJ. Wiley.

Sun, R. (2018). Cognitive Social Simulation for Policy Making. Policy Insights from the Behavioral and Brain Sciences, 5(2), 240-246. https://doi.org/10.1177/2372732218785925

Tolk, A. (Red.). (2012). Engineering principles of combat modeling and distributed simulation. Hoboken, NJ. Wiley.

Watts, C. & Gilbert, N. (2014). Simulating innovation: Computer-based tools for rethinking innovation. Northhampton, MA. Edward Elgar Publishing.

Yilmaz, L. (Red.). (2015). Concepts and Methodologies for Modeling and Simulation. New York. Springer.

Publiceret
2019-12-06
Sektion
Artikler