Muligheder og barrierer for kunstig intelligens i den offentlige sektor

En socioteknisk analyse

Forfattere

  • Stine Nørgaard Christensen Center for IT-Ledelse, Videnskabelig assistent ved Aalborg Universitet
  • Jeppe Agger Nielsen Center for IT-Ledelse, Professor ved Aalborg Universitet
  • Mette Strange Noesgaard Center for IT-Ledelse, Lektor ved Aalborg Universitet
  • Kasper Trolle Elmholdt Center for IT-Ledelse, Lektor ved Aalborg Universitet
  • Helene Friis Ratner Institut for Pædagogik og Uddannelse, Lektor ved Aarhus Universitet

DOI:

https://doi.org/10.22439/sis.v39i4.7325

Resumé

Der er stigende interesse for at udnytte potentialerne i kunstig intelligens (AI) i den offentlige sektor, og der iværksættes i disse år mange eksperimenter. Mens der er megen snak om mulighederne, har få studier systematisk undersøgt implementeringen af AI på de centrale velfærdsområder. Ærindet i denne artikel er at gå bagom hypen og bidrage med et nuanceret blik på AI anvendelse. Vores empiriske fokus er på ældreplejen, hvor en aldrende befolkning og vanskeligheder ved rekruttering af arbejdskraft har affødt en efterspørgsel på nye teknologiske løsninger. Vi bygger på et kvalitativt studie i ældreplejen i dansk kommune og tager teoretisk afsæt i Harold Leavitts klassiske sociotekniske rammeværk. Vores fokus er på samspillet mellem teknologi, mennesker, struktur, og opgaver, som i det oprindelige rammeværk, men udvider og specificerer denne med et fokus på regulering og etik for at tilpasse modellen til en AI kontekst. Analysen viser, at kompetenceniveau, datakvalitet og skaleringsudfordringer i kombination med etiske og lovgivningsmæssige aspekter opleves som særligt hæmmende for implementering og udbredelsen af AI. Studiet bidrager med nye indsigter i, hvorfor AI teknologier ofte bliver udfordret, når de møder praksis. Vi udstikker samtidig en række opmærksomheder, som har implikationer for ledelse og organiseringen af AI i den offentlige sektor.

Referencer

Aaen, J, & Nielsen, J. A. (2022). Lost in the diffusion chasm: Lessons learned from a failed robot project in the public sector. Information Polity 27 (1), 3-20. https://doi.org/10.3233/IP-200286

Aalborg Kommune (2022). AIR - AI Rehabilitering: Slutevaluering. AIR_Slutevaluering_-_Final_7.3.22.pdf (au.dk)

Alon-Barkat, S., & Busuioc, M. (2023). Human-AI interactions in public sector decision making: "automation bias" and "selective adherence" to algorithmic advice. Journal of Public Administration Research and Theory, 33(1), 153-169. https://doi.org/10.1093/jopart/muac007

Araujo, T. Helberger, N., Kruikmeier, S., & de Vreese, C. H. (2020). In AI we trust? Perceptions about automated decision-making by artificial intelligence. AI & Society, 35 (3), 611-623. https://doi.org/10.1007/s00146-019-00931-w

Ayers, J. W., Poliak, A., Dredze, M., Leas, E. C., Zhu, Z., Kelley, J. B., Faix, D. J., Goodman, A. M., Longhurst, C. A., Hogarth, M., & Smith, D. M. (2023). Comparing physician and artificial intelligence chatbot responses to patient questions posted to a public social media forum. JAMA internal medicine, 183 (6), 589-596. https://doi.org/10.1001/jamainternmed.2023.1838

Barley SR. (2020). Work and Technological Change. Oxford: Oxford University Press. https://doi.org/10.1093/oso/9780198795209.001.0001

Benbya, H., Davenport, T. H., & Pachidi, S (2020). Special Issue Editorial: Artificial intelligence in organizations: Current state and future opportunities. MIS Quarterly Executive, 19 (4), 9-21. https://doi.org/10.2139/ssrn.3741983

Bikson, T. K., & Eveland, J. D. (1990). The interplay of work group structures and computer support. In: J. Galegher, R. Kraut & C. Egido (Eds., pp. 245-289). Intellectual Teamwork: Social and Technological Foundations of Cooperative Work. Hillsdale, NJ: Lawrence Erlbaum.

Blomberg, S. N., Folke, F., Ersbøll, A. K., Christensen, H. C., Torp-Pedersen, C., Sayre, M. R., Counts, C. R., & Lippert, F. K. (2019). Machine learning as a supportive tool to recognize cardiac arrest in emergency calls. Resuscitation, 138, 322-329. https://doi.org/10.1016/j.resuscitation.2019.01.015

Braun, V. & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3, 77-101. https://doi.org/10.1191/1478088706qp063oa

Brayne S. (2020). Predict and Surveil: Data, Discretion, and the Future of Policing. Oxford, UK: Oxford University Press. https://doi.org/10.1093/oso/9780190684099.001.0001

Christin A. (2017). Algorithms in practice: comparing web journalism and criminal justice. Big Data & Society, 4 (2),1- 14. https://doi.org/10.1177/2053951717718855

Ciriello, R. F., Richter, A., & Mathiassen, L. (2024). Emergence of creativity in IS development teams: A socio-technical systems perspective. International Journal of Information Management, 74, 1-14. https://doi.org/10.1016/j.ijinfomgt.2023.102698

Coffie, R. B., Boaten, K. A., & Asombala, R. (2018). Electronic Voucher Payment System: Toward A Leavitt Diamond Analytical Perspectives of Technological Change. Journal of Economic Development, Management, IT, Finance & Marketing, 10 (1), 40-58.

Danmarks Statistik (2023). Service til ældre 2022. Sociale forhold. https://www.dst.dk/Site/Dst/Udgivelser/nyt/GetPdf.aspx?cid=46131

Datatilsynet (2022). Udtalelse fra Datatilsynet: Kommuners hjemmel til AIprofileringsværktøjet Asta. https://www.datatilsynet.dk/afgoerelser/afgoerelser/2022/maj/udtalelse-vedroerendekommuners-hjemmel

Datatilsynet (2023). Kommunes hjemmel til AI-løsning til identifikation af borgere med behov for vedligeholdende træning og rehabiliterende indsats. Kommunes hjemmel til AI-løsning til identifikation af borgere med behov for vedligeholdende træning og rehabiliterende indsats (datatilsynet.dk)

Digitaliseringsstyrelsen (2021). Temperaturmåling af signaturprojekterne. https://digst.dk/media/24196/temperaturmaaling-af-signaturprojekterne-endelig.pdf

Digitaliseringsstyrelsen (2022). Signaturprojekter med kunstig intelligens i kommuner og regioner. Signaturprojekter med kunstig intelligens i kommuner og regioner (digst.dk)

Dunleavy, P., & Margetts, H. (2023). Data science, artificial intelligence and the third wave of digital era governance. Public Policy and Administration, 1-30. https://doi.org/10.1177/09520767231198737

EU Kommissionen (2019). White Paper on Artificial Intelligence: A European approach to excellence and trust. https://ec.europa.eu/info/files/white-paper-artificialintelligenceeuropean-approach-excellence-and-trust

Ford, M. (2015). The rise of the robots. Technology and the threat of mass unemployment. London: Oneworld Publications.

Grodal, S., Anteby, M., & Holm, A. L. (2021). Achieving rigor in qualitative analysis: The role of active categorization in theory building. Academy of Management Review, 46 (3), 591-612. https://doi.org/10.5465/amr.2018.0482

Ho, A. (2020). Are we ready for artificial intelligence health monitoring in elder care?. BMC Geriatrics, 20 (1), 358. https://doi.org/10.1186/s12877-020-01764-9

Henman, P. (2020). Improving public services using artificial intelligence: Possibilities, pitfalls, governance. Asia Pacific Journal of Public Administration, 42 (4), 209-221. https://doi.org/10.1080/23276665.2020.1816188

Kellogg, K., Valentine, M., & Christin, A. (2020). Algorithms at work: The new contested terrain of control. Academy of Management Annals, 14 (1), 366-410. https://doi.org/10.5465/annals.2018.0174

KL, Dansk Erhverv (2023). Kunstig intelligens skal løfte fremtidens velfærd. https://via.ritzau.dk/pressemeddelelse/13757167/kunstig-intelligens-skal-loftefremtidens-velfaerd?publisherId=13559771&lang=da

Leavitt, H. J. (1964). Applied Organizational Change in Industry: Structural, Technological and Humanistic Approaches. In: J. G. March (Ed., pp. 1144-1170). Handbook of organization. Chicago: Rand McNally and Company.

Leavitt, & Bahrami, H. (1988). Managerial Psychology: Managing Behavior in Organizations. University of Chicago Press.

Lebovitz, S., Lifshitz-Assaf, H., & Levina, N. (2022). To engage or not to engage with AI for critical judgments: How professionals deal with opacity when using AI for medical diagnosis. Organization Science, 33 (1), 126-148. https://doi.org/10.1287/orsc.2021.1549

Løberg, I. B. (2022). Assessments of digital client representations: How frontline workers reconstruct client narratives from fragmented information. Journal of Public Administration Research and Theory, 33 (1), 19-29. https://doi.org/10.1093/jopart/muac017

Mazmanian, M., Orlikowski, W. J., & Yates, J. (2013). The autonomy paradox: The implications of mobile email devices for knowledge professionals. Organization Science, 24, 1337-1357. https://doi.org/10.1287/orsc.1120.0806

McAfee, A., & Brynjolfsson, E. (2017). Machine, platform, crowd: Harnessing our digital future. WW Norton & Company.

McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (1955). A proposal for the Dartmouth summer research project on artificial intelligence, august 31, 1955. AI magazine, 2(4). 12-14.

Mergel, I., Dickinson, H., Stenvall, J., & Gasco, M. (2023). Implementing AI in the public sector. Public Management Review, 1-14. https://doi.org/10.1080/14719037.2023.2231950

Neumann, O., Guirguis, K., & Steiner, R. (2022). Exploring artificial intelligence adoption in public organizations: a comparative case study. Public Management Review, 26 (1), 1-28. https://doi.org/10.1080/14719037.2022.2048685

Nielsen, J.A., Elmholdt, K., & Noesgaard, M. S. (2020). Ledelse af digital transformation: Erfaringer fra et kommunalt digitaliseringsinitiativ. Samfundslederskab i Skandinavien, 35 (6), 423-442. https://doi.org/10.22439/sis.v35i6.6110

Nielsen, J. A., K. Elmholdt, MS. Noesgaard (2024). Leading digital transformation. A narrative perspective. Public Administration Review 84 (4), 589-603. https://doi.org/10.1111/puar.13721

Nograšek, J., & Vintar, M. (2014). E-government and organisational transformation of government: Black box revisited? Government Information Quarterly, 31 (1), 108-118. https://doi.org/10.1016/j.giq.2013.07.006

Noordt, C. V., & Misuraca, G. (2022) Artificial intelligence for the public sector: results of landscaping the use of AI in government across the European Union. Government Information Quarterly, 39(3), 101714 https://doi.org/10.1016/j.giq.2022.101714

Næsborg-Andersen, A., Hammerslev, O., & Ullits, J. (2023). Beslutningsunderstøttende algoritmer i det offentlige: Påvirkningen af sagsbehandlerens skøn og begrundelse. Politica, 55 (3), 199-217. https://doi.org/10.7146/politica.v55i3.140267

Pink Pastinak (2023). PLAI. AI signaturprojekt: Øget kontinuitet i ældreplejen ved hjælp af kunstig intelligens. En antropologisk slutevaluering blandt planlæggere og ledere.

Plesner, U., & Justesen, L. (2018). Merproduktion af målbarhed: Synlighed og nye ledelsesopgaver. Tidsskrift for Arbejdsliv, 20 (4), 109-115. https://doi.org/10.7146/tfa.v20i4.111595

Pors, A. S., Pedersen, K. Z., & Kirkegaard, L. (2023). Drømmen om datadrevet velfærd. Politica, 55 (3), 218-241.https://doi.org/10.7146/politica.v55i3.140316

Raisch, S., & Krakowski, S. (2021). Artificial intelligence and management: The automationaugmentation paradox. Academy of Management Review, 46 (1), 192-210. https://doi.org/10.5465/amr.2018.0072

Ratner, H. F., & Elmholdt, K. (2023). Algorithmic constructions of risk: Anticipating uncertain futures in child protection services. Big Data & Society, 10 (2), 1-12. https://doi.org/10.1177/20539517231186120

Ratner, H. F., & Schrøder, I. (2024). Ethical plateaus in Danish child protection services: The rise and demise of algorithmic models. Science & Technology Studies 37(3), 44-61. https://doi.org/10.23987/sts.126011

Røhl, U. (2023). Automated decision-making and good administration: Views from inside the government machinery. Government Information Quarterly 40 (4),101864. https://doi.org/10.1016/j.giq.2023.101864

Sergeeva, A. V., Faraj, S., & Huysman, M. (2020). Losing touch: An embodiment perspective on coordination in robotic surgery. Organization Science, 31 (5), 1248-1271. https://doi.org/10.1287/orsc.2019.1343

Sousa, W. G. de, Melo, E. R. P. de, Bermejo, P. H. D. S., Farias, R. A. S., & Gomes, A. O. (2019). How and where is artificial intelligence in the public sector going? A literature review and research agenda. Government Information Quarterly, 36 (4), 101392. https://doi.org/10.1016/j.giq.2019.07.004

Sun, T. Q., & Medaglia, R (2019). Mapping the challenges of artificial intelligence in the public sector: Evidence from public healthcare. Government Information Quarterly, 36 (2), 368-383. https://doi.org/10.1016/j.giq.2018.09.008

Taylor, L. (2017). What is data justice? The case for connecting digital rights and freedoms globally. Big Data & Society, 4 (2), 1-14. https://doi.org/10.1177/2053951717736335

Van den Broek, E., Sergeeva, A., & Huysman, M. (2021). When the Machine Meets the Expert: An Ethnography of Developing AI for Hiring. MIS quarterly, 45 (3), 1557-1580. https://doi.org/10.25300/MISQ/2021/16559

van Dijk, N., Casiraghi, S., & Gutwirth, S. (2021). The 'ethification' of ICT governance. Artificial intelligence and data protection in the European Union. Computer Law & Security Review, 43, Article 105597. https://doi.org/10.1016/j.clsr.2021.105597

Waller, M. & Waller, P. (2020). Why Predictive Algorithms are So Risky for Public Sector Bodies. Social Science Research Network. https://doi.org/10.2139/ssrn.3716166

Wirtz, B. W., Weyerer, J. C., & Geyer, C. (2019). Artificial intelligence and the public sector-Applications and challenges. International Journal of Public Administration, 42 (7), 596-615. https://doi.org/10.1080/01900692.2018.1498103

Zuboff S. (2019). The Age of Surveillance Capitalism: The Fight for the Future at the New Frontier of Power. London: Profile Books.

Downloads

Publiceret

2024-12-18

Nummer

Sektion

Artikler