Køn og metodevalg blandt samfundsvidenskabelige specialeskrivende
DOI:
https://doi.org/10.22439/dansoc.v29i1.5741Nøgleord:
digitale metoder, akademisk produktion, topic modelling, køn.Resumé
Feministisk teori og forskning har argumenteret for to sammenhænge mellem køn og forskningsmetoder: Kvinder benytter oftere kvalitative metoder, og køn påvirker valget af forskningsområder. Tidligere forskning baseret på fagfællebedømte publikationer understøtter disse foreslåede sammenhænge, men anerkender bias som følge af homogeniserende mekanismer såsom akademisk professionalisering og fagfællebedømmelse. Vi komplementerer disse studier gennem en analyse af de »nedre lag af akademisk produktion«, specifikt 1.103 socialvidenskabelige specialer, hvilket giver en alternativ vinkel på studiet af køn og forskningsdesign. Vi benytter nylige innovationer indenfor digital tekstanalyse og estimerer en structural topic model for at modellere korpussets latente tematiske struktur. Ud fra denne model tester vi empirisk de foreslåede sammenhænge mellem køn, forskningsmetoder og forskningsområder. Vi finder, at de kvindelige specialestuderende er mere tilbøjelige til at benytte kvalitative metoder, og at nogle forskningsområder er kønnede. Topic modelling bliver demonstreret som et effektivt redskab til at analysere akademiske tekster. ENGELSK ABSTRACT: Rasmus Munksgaard and Oskar Enghoff: Gender and choice of method among social science masters students Feminist theory and research have argued that gender and research methods are related in two ways: women are more likely to employ qualitative methods, and gender affects choice of research area. While previous research on peer-reviewed publications supports these claims, the authors acknowledge that the data is biased due to the homogenizing mechanisms of academic professionalization and peer-review. We complement these previous studies with an analysis of ”lower-level academic production”, specifically 1,103 master’s theses, providing an alternate angle to the study of gender and research design. We employ recent innovations in digital text analysis, and estimate a structural topic model of the corpora to model the latent thematic structure. Using this model, we test the proposed links between gender, research methods and research area. We find that female students are more likely to employ qualitative methods than men, and that some research areas are gendered. Topic modeling is shown to be an efficient tool in the analysis of academic texts. Keywords: Digital methods, academic production, topic modelling, gender.Referencer
Abend, G. (2006). Styles of sociological thought: Sociologies, epistemologies, and the Mexican and U.S. quests for truth. Sociological Theory 24(1), 1-41. https://doi.org/10.1111/j.0735-2751.2006.00262.x
Bache, S.M., & Wickham, H. (2014). magrittr: A Forward-Pipe Operator for R. Tilgængelig påhttps://CRAN.R-project.org/package=magrittr
Baumer, E.P.S., Mimno, D., Guha, S., Quan, E., & Gay, G.K. (2017, 4). Comparing grounded theory and topic modeling: Extreme divergence or unlikely convergence? Journal of the Association for Information Science and Technology. In press.
Blei, D.M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77-84. https://doi.org/10.1145/2133806.2133826
Blei, D.M., & Lafferty, J.D. (2007). A Correlated Topic Model of Science. The Annals of Applied Statistics, 1(1), 17-35. https://doi.org/10.1214/07-AOAS114
Blei, D.M., Ng, A.Y., Jordan, M.I., & Lafferty, J. (2003). Latent Dirichlet Allocation. Journal of Machine Learning Research, 3(4/5), 993-1022.
Brewer, R.M. (1989, 3). Black women and feminist sociology: The emerging perspective. The American Sociologist, 20(1), 57-70. https://doi.org/10.1007/BF02697787
Chang, J., Gerrish, S., Wang, C., Boyd-Graber, J.L., & Blei, D.M. (2009). Reading tea leaves: How humans interpret topic models. In Proceedings of the 22Nd International Conference on Neural Information Processing Systems, NIPS ‘09, 288-296.
Cook, J.A., & Fonow, M.M. (1986). Knowledge and Women’s Interests: Issues of Epistemology and Methodology in Feminist Sociological Research. Sociological Inquiry, 56(1), 2-29. https://doi.org/10.1111/j.1475-682X.1986.tb00073.x
Denny, M. & Spirling, A. (2017). Text Preprocessing for Unsupervised Learning: Why It Matters, When It Misleads, and What to Do about It. Tilgængelig på https://ssrn.com/ abstract=2849145. https://doi.org/10.2139/ssrn.2849145
DiMaggio, P., Nag, M., & Blei, D. (2013). Exploiting affinities between topic modeling and the sociological perspective on culture: Application to newspaper coverage of US government arts funding. Poetics, 41(6), 570-606. https://doi.org/10.1016/j.poetic.2013.08.004
Dunn, D., & Waller, D. (2000, 4). THE METHODOLOGICAL INCLINATIONS OF GENDER SCHOLARSHIP IN MAINSTREAM SOCIOLOGY JOURNALS. Sociological Spectrum, 20(2), 239-257. https://doi.org/10.1080/027321700279974
Erola, J., Reimer, D., Räsänen, P., & Kropp, K. (2015). No crisis but methodological separatism: a comparative study of Finnish and Danish publication trends between 1990 and 2009. Sociology, 49(2), 374-394. https://doi.org/10.1177/0038038514542495
Fairclough, N. (1992). Intertextuality in critical discourse analysis. Linguistics and Education, 4(3), 269-293. https://doi.org/10.1016/0898-5898(92)90004-G
Feinerer, I., Buchta, C., Geiger, W., & Rauch, J. (2013). The textcat package for n-gram based text categorization in R. Journal of Statistical Software, 52(6), 1-17.
Feinerer, I., Hornik, K., & Meyer, D. (2008). Text Mining Infrastructure in {R}. Journal of Statistical Software, 25(5), 1-54. https://doi.org/10.18637/jss.v025.i05
Freeman, M.K., Chuang, J., Roberts, M.E., Stewart, B.M., & Tingley, D. (2015). stmBrowser: Structural Topic Model Browser. Tilgængelig på http://cran.r-project.org/ package=stmBrowser
Forskningsrådet for Samfund og Erhverv (2006) Dansk sociologis muligheder. København: Forskningsrådet for Samfund og Erhverv, Arbejdsgruppe under Forskningsrådet for Samfund og Erhverv.
Gheradi, S., & Turner, B. (2002). Real Men Don’t Collect Soft Data. I M. Huberman & M.B. Miles (Eds), The qualitative researcher’s companion. United Kingdom. London: Sage.
Goldenberg, S., & Grigel, F. (1991, 9). Gender, science and methodological preferences. Social Science Information, 30(3), 429-443. https://doi.org/10.1177/053901891030003003
Grant, L., & Ward, K.B. (1991). Gender and Publishing in Sociology. Source: Gender and Society, 5(2), 207-223. https://doi.org/10.1177/089124391005002005
Grant, L., Ward, K.B., & Rong, X.L. (1987, 12). Is There An Association between Gender and Methods in Sociological Research? American Sociological Review, 52(6), 856-862. https://doi.org/10.2307/2095839
Griffin, C., & Phoenix, A. (1994). The Relationship between Qualitative and Quantitative Research: Lessons from Feminist Psychology. Journal of Community & Applied Social Psychology, 4(4), 287-298. https://doi.org/10.1002/casp.2450040408
Grimmer, J., & Stewart, B.M. (2013). Text as Data: The Promise and Pitfalls of Automatic Content Analysis Methods for Political Texts. Political Analysis, 21(3), 267-297. https://doi.org/10.1093/pan/mps028
Hall, D., Jurafsky, D., & Manning, C.D. (2008). Studying the history of ideas using topic models. Association for Computational Linguistics. https://doi.org/10.3115/1613715.1613763
Harding, S., & Norberg, K. (2005). New Feminist Approaches to Social Science Methodologies: An Introduction. Signs: Journal of Women in Culture & Society, 30(4), 2009-2015. https://doi.org/10.1086/428420
Harding, S. (1992). Rethinking standpoint epistemology: What is »strong objectivity?«. The Centennial Review, 36(3), 437-470.
Hughes, C., & Cohen, R.L. (2010, 7). Feminists really do count: the complexity of feminist methodologies. International Journal of Social Research Methodology, 13(3), 189-196. https://doi.org/10.1080/13645579.2010.482249
Jockers, M.L. (2013). Macroanalysis: Digital methods and literary history. University of Illinois Press.
Jockers, M.L., & Mimno, D. (2013). Significant themes in 19th-century literature. Poetics, 41(6), 750-769. https://doi.org/10.1016/j.poetic.2013.08.005
Larsen, M., Holt, H., & Rode, M. (2016). Et kønsopdelt arbejdsmarked: Udviklingstræk, konsekvenser og forklaringer. København: SFI – Det Nationale Forskningscenter for Velfærd.
Levy, K.E.C., & Franklin, M. (2014). Driving Regulation: Using Topic Models to Examine Political Contention in the U.S. Trucking Industry. Social Science Computer Review, 32(2),182-194. https://doi.org/10.1177/0894439313506847
Lucas, C., Nielsen, R.A., Roberts, M.E., Stewart, B.M., Storer, A., & Tingley, D. (2015). Computer-Assisted Text Analysis for Comparative Politics. Political Analysis, 23(2), 254-277. https://doi.org/10.1086/428417
Margaret Fonow, M., & Cook, J.A. (2005). Feminist methodology: New applications in the academy and public policy. Signs: Journal of Women in Culture and Society, 30(4), 2211-2236.
McNamee, S.J., Willis, C.L., & Rotchford, A.M. (1990). Gender Differences in Patterns of Publication in Leading Sociology. The American Sociologist, 21 (2), 99-115.
Mimno, David, Hanna M. Wallach, Edmund Talley, Miriam Leenders, & Andrew McCallum (2011). Optimizing Semantic Coherence in Topic Models. Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing (2), 262-72.
Mohr, J.W., & Bogdanov, P. (2013). Introduction: Topic models: What they are and why they matter. Poetics, 41(6), 545-569. https://doi.org/10.1016/j.poetic.2013.10.001
Munksgaard, R., & Demant, J. (2016). Mixing politics and crime The prevalence and decline of political discourse on the cryptomarket. International Journal of Drug Policy, 35, 77-83. https://doi.org/10.1016/j.drugpo.2016.04.021
Nordisk Forskningsinstitut. (2017). Danskernes Navne. Tilgængelig på http://www.danskernesnavne.navneforskning.ku.dk/Personnavne.asp
Norris, N. (1997, 3). Error, bias and validity in qualitative research. Educational Action Research, 5(1), 172-176. https://doi.org/10.1080/09650799700200020
Oakley, A. (1998). Gender, Methodology and People’s Ways of Knowing: Some Problems With Feminism and the Paradigm Debate in Social Science. Sociology, 32(4), 707-731. https://doi.org/10.1177/0038038598032004005
Plowman, A.D., & Smith, A.D. (2011, 5). The gendering of organizational research methods. Qualitative Research in Organizations and Management: An International Journal, 6(1), 64-82. https://doi.org/10.1108/17465641111129399
Quinn, K.M., Monroe, B.L., Colaresi, M., Crespin, M.H., & Radev, D.R. (2010). How to Analyze Political Attention with Minimal Assumptions and Costs. American Journal of Political Science, 54(1), 209-228. https://doi.org/10.1111/j.1540-5907.2009.00427.x
R Core Team. (2017). R: A Language and Environment for Statistical Computing. Vienna, Austria.
Ramage, D., Dumais, S., & Liebling, D. (2010). Characterizing microblogs with topic models. Proceedings of the Fourth International Conference on Weblogs and Social Media, ICWSM 2010.
Ramazanoglu, C. (1992). ON FEMINIST METHODOLOGY: MALE REASON VERSUS FEMALE EMPOWERMENT. Sociology, 26(2), 207-212. https://doi.org/10.1177/0038038592026002003
Riger, S., & Stephanie. (1992). Epistemological debates, feminist voices: Science, social values, and the study of women. American Psychologist, 47(6), 730-740. https://doi.org/10.1037/0003-066X.47.6.730
Roberts, M.E., Stewart, B.M., & Tingley, D. (2014). Stm: R package for structural topic models. R package version 0.6, 1.
Roberts, M.E., Stewart, B.M., Tingley, D., Airoldi, E.M., & others. (2013). The structural topic model and applied social science. In Advances in neural information processing systems workshop on topic models: Computation, application, and evaluation.
Roberts, M.E., Stewart, B.M., Tingley, D., Lucas, C., Leder-Luis, J., Gadarian, S.K., Albertson, B. & Rand, D.G. (2014). Structural Topic Models for Open-Ended Survey Responses. American Journal of Political Science, 58(4), 1064-1082. https://doi.org/10.1111/ajps.12103
Sprague, J., & Zimmerman, M.K. (1989). Quality and Quantity: Reconstructing Feminist Methodology. The American Sociologist, 20(1), 71-86. https://doi.org/10.1007/BF02697788
Thelwall, M., Vaughan, L., & Björneborn, L. (2005). Webometrics. Annual Review of Information Science and Technology, 39(1), 81-135. https://doi.org/10.1002/aris.1440390110
Törnberg, A., & Törnberg, P. (2016). Combining CDA and topic modeling: Analyzing discursive connections between Islamophobia and anti-feminism on an online forum. Discourse & Society, 27(4). https://doi.org/10.1177/0957926516634546
Unger, R.K., Draper, R.D., & Pendergrass, M.L. (1986). Personal Epistemology and Personal Experience. Journal of Social Issues, 42(2), 67-79. https://doi.org/10.1111/j.1540-4560.1986. tb00225.x
Venturini, T., & Latour, B. (2010). The social fabric: Digital traces and quali-quantitative methods. Proceedings of Futur en Seine 2009. Tilgængelig på http://www.academia.edu/download/38150764/
Ward, K.B., & Grant, L. (1985). The Feminist Critique and a Decade of Published Research in Sociology Journals. The Sociological Quarterly, 26(2), 139-157. https://doi.org/10.1111/j.1533-8525.1985.tb00220.x
Westbrook, L., & Saperstein, A. (2015, 8). New Categories Are Not Enough. Gender & Society,29(4), 534-560. https://doi.org/10.1177/0891243215584758
Wickham, H. (2007). Reshaping Data with the reshape Package. Journal of Statistical Software, 21(12), 1-20. https://doi.org/10.18637/jss.v021.i12
Wickham, H. (2009). ggplot2: Elegant Graphics for Data Analysis. Springer.Verlag New York. Tilgængelig på http://ggplot2.org
Wickham, H. (2016a). httr: Tools for Working with URLs and HTTP.Tilgængelig på https://CRAN.R-project.org/package=httr
Wickham, H. (2016b). rvest: Easily Harvest (Scrape) Web Pages. Tilgængelig på https://CRAN.R-project.org/package=rvest
Wickham, H. (2017). stringr: Simple, Consistent Wrappers for Common String Operations. Tilgængelig på https://CRAN.R-project.org/ package=stringr
Wickham, H., & Francois, R. (2016). dplyr: A Grammar of Data Manipulation. Tilgængelig påhttps://CRAN.R-project.org/package= dplyr
Wickham, H., Francois, R., & Müller, K. (2016). tibble: Simple Data Frames. Tilgængelig på https://CRAN.R-project.org/package= tibble